J.B. Alvarez · A. Martín · L.M. Martín

Variation in the high-molecular-weight glutenin subunits coded at the *Glu-H^{ch}1* locus in *Hordeum chilense*

Received: 22 March 2000 / Accepted: 14 April 2000

Abstract Hordeum chilense Roem. et Schult. is a native South American diploid wild barley included in the section Anisolepis Nevski. H. chilense occurs exclusively in Chile and Argentina and has been used in the synthesis of a new amphiploid named tritordeum (×Tritordeum Ascherson et Graebner). The HMW glutenin subunits of H. chilense have a great influence on gluten strength of tritordeum. The variability of these proteins has been analysed electrophoretically, and up to ten allelic variants have been detected in a world collection of this species. This genetic variability has been included in 121 lines of tritordeum and could be used for widening the genetic basis of tritordeum and wheat.

Keywords *Hordeum chilense* · Prolamins · SDS-PAGE · Genetic variability · Tritordeum

Introduction

Interspecific hybridisation with wild species is a useful tool in breeding *Triticeae* crops. A direct approach for exploiting wild species genetic variability is the synthesis of amphiploids or artificial polyploids by means of duplicating the chromosomes of hybrids with colchicine. Polyploidy is in actual fact a natural mechanism in the evolution of cereals, as in durum and bread wheats. Although there have been many attempts (Jauhar 1993), only the genome of rye (*Secale cereale* L.) has been suc-

Communicated by H.F. Linskens

J.B. Alvarez (☑) · L.M. Martín Departamento de Genética, Escuela Técnica Superior de Ingenieros A

Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Córdoba, Apdo. 3048, E-14080 Córdoba, Spain e-mail: ge2alcaj@uco.es

A. Martín

Departamento de Agronomía y Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apdo. 4084, E-14080 Córdoba, Spain cessfully integrated with the wheat genomes to produce one man-made crop, triticale (×Triticosecale Wittmack), which has already proven useful in several regions (Varughese 1996). Recently, a new cereal, named tritordeum (×Tritordeum Ascherson et Graebner), has been synthesised by using a native South American diploid wild barley (Hordeum chilense Roem. et Schult.). This new crop has shown promising characteristics as a new man-made cereal (see Martín et al. 1999 for review).

The storage protein polypeptide composition of the endosperm of hexaploid tritordeums has been studied by SDS-PAGE (Alvarez et al. 1993) and A-PAGE (Alvarez et al. 1999a). At this level, the polypeptide composition of the amphiploids consisted of the addition of polypeptides from both parents. The storage prolamins synthesised by the **H**^{ch} genome, derived from *H. chilense*, influence the gluten strength of hexaploid tritordeum, mainly the high-molecular-weight (HMW) glutenin subunits coded at the *Glu-H*^{ch}1 locus (Alvarez et al.1999a). This locus has been identified as being homeologous to the *Glu-1* loci of wheat and is located on long arm of the chromosome 1H^{ch} (Payne et al. 1987; Tercero et al. 1991).

The genetic basis of tritordeum has been expanded with the synthesis of new amphiploids using new accessions of *H. chilense*. Most of these accessions are derived from the natural populations collected in expeditions carried out by our group in Chile and Argentina (Tobes et al 1995; Gimenez et al 1997).

In the investigation reported here these new lines of *H. chilense*, which have been used as the maternal parents of 121 lines of primary tritordeum, were analysed. Our aim was to evaluate the variability of the HMW glutenin subunits coded at the *Glu-H^{ch}1* locus in *H. chilense* included in tritordeum.

Materials and methods

Seeds of 38 lines of *H. chilense* derived from natural populations collected in Chile between 29° 55' and 41° 40' latitude south were

used in this study. These lines have been self-pollinated during two generations. Seeds of bread wheat, cvs. Chinese Spring (null, 7+8, 2+12) and Yecora (1, 17+18, 5+10), were used as references.

Proteins were extracted from crushed endosperm. Before glutenin solubilisation, the monomeric prolamins were extracted with a 1.5 M dimethylformamide aqueous solution followed by a double-wash with 50% (v/v) propan-1-ol at 60°C for 30 min with agitation every 10 min. Glutenin was solubilised with 250 μ l of buffer containing 50% (v/v) propan-1-ol, 80 mM Tris-HCl pH 8.5, 2% (w/v) dithiothreitol, at 60°C for 30 min. After centrifugation, 200 μ l of the supernatant was transferred to a new tube, mixed with 3 μ l of 4-vinylpyridine and incubated for 30 min at 60°C. The samples were divided into two aliquots of 100 μ l and precipitated with 1 ml of cold-acetone. The dried pellet was solubilised in buffer containing 625 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 10% (v/v) glycerol, 0.02% (w/v) bromophenol blue and 2% (w/v) dithiothreitol in a 1:5 ratio (mg/ μ l) to wholemeal.

Reduced and alkylated proteins were fractionated by electrophoresis in vertical SDS-PAGE slabs in a discontinuous TRIS-HCl-SDS buffer system (pH: 6.8/8.8) at an 8% polyacrylamide concentration (w/v, C= 1.28%) with and without 4 M urea. The TRIS-HCl/glycine buffer system of Laemmli (1970) was used. Electrophoresis was performed at a constant current of 30 mA/gel at 18° C for 45 min after the tracking dye migrated off the gel.

Gels were stained overnight with 12% (w/v) trichloroacetic acid solution containing 5% (v/v) ethanol and 0.05% (w/v) Coomassie Brilliant Blue R-250. Destaining was carried out with distilled water

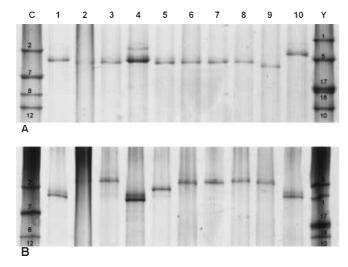
Results and discussion

The analysis of endosperm protein has proven to be a useful tool in the evaluation of variability in cereals and quality improvement in breeding programmes. We studied variation in the HMW glutenin subunits in 38 lines of *H. chilense* collected in Chile and representative of the distribution area of the species (Table 1). The H1, H11 and H12 accessions were obtained from germplasm banks where geographical data were unfortunately missing.

All of the prolamins (monomerics and polymerics) of H. vulgare L. are usually named hordeins. Consequently, some authors have applied the name hordeins to the prolamins of *H. chilense* (Payne et al. 1987; Tercero et al. 1991), even though no evidence has been found that identified these proteins to the prolamins of *H. vulgare*. In fact, a biochemical comparison between H. chilense and *H. vulgare* showed great differences between these species (Fernández et al. 1987). Some results, such as the similarity of the chromosome banding pattern after in situ hybridisation with probe pAs1 between H. chilense and Aegilops tauschii Coss. (Cabrera et al. 1995) or cytoplasm compatibility (Millán and Martín 1992) have suggested that the *H. chilense* genome could be more similar to wheat than to barley. On basis of these results, the Hch prolamins observed after the extraction procedure used in this report have been considered to be glutenin-like proteins.

Table 1 Origin of 35 of the 38 lines of *H. chilense* used in this study

Population	Geographical locations			Accessions	
	Latitude (S)	Longitude (W)	Altitude (m)		
PH671	29° 55'	71° 14'	150	H286	
PH676	30° 32'	70° 41'	50	H293	
PH677	30° 33'	71° 29'	150	H297	
PH681	30° 37'	71° 14'	250	H309	
PH682	30° 41'	71° 22'	150	H295	
PH692	31° 47'	70° 35'	1150	H308	
PH693	31° 48'	71° 21'	650	H304	
PH695	31° 53'	71° 29'	25	H290	
PH701	31° 54'	72° 22'	500	H17	
PH702	31° 56'	71° 31'	0	H7	
PH703	32° 15'	71° 32'	0	H203	
PH708	32° 18'	71° 31'	1750	H16, H255	
PH709	32° 25'	70° 55'	1100	H213	
PH714	32° 58'	71° 10'	350	H205	
PH715	33° 01'	70° 54'	750	H202	
PH716	33° 00'	70° 57'	1200	H204	
PH720	34° 04'	70° 56'	300	H8, H35,	
				H217, H228	
PH722	33° 06'	71° 28'	300	H209	
PH728	33° 39'	70° 21'	1060	H210	
PH729	34° 03'	71° 38'	200	H39	
PH731	34° 45'	70° 34'	800	H59, H60,	
				H200	
PH732	34° 51'	70° 34'	1000	H55, H56	
PH736	36° 45'	73° 09'	0	H51, H52	
PH737	36° 45'	72° 18'	83	H47, H220	
PH751	38° 41'	73° 24'	0	H252	
PH752	41° 40'	73° 35'	Ö	H255	


Novel HMW glutenin subunits

Previous data have shown that H. chilense has one HMW glutenin subunit coded at the Glu-Hch1 locus on chromosome 1H^{ch} (Payne et al 1987; Tercero et al 1991), that is related with gluten strength in hexaploid tritordeum (Alvarez et al. 1999a). Until now, only three allelic variants, Hcha, Hchb and Hchc, have been identified, with subunit Hchb being associated with good quality in tritordeum (Alvarez et al. 1999a). Our results revealed a wide range of variation for the Glu-Hch1 locus; in fact, although this locus presents only one gene, ten allelic variants were found using two types of gels. The relative frequencies of each allelic variant are given in Table 2. The SDS-PAGE electrophoregrams in normal and urea gels of all the subunits are presented in Fig. 1 A and 1B, respectively. The nomenclature of the HMW glutenin subunits of H. chilense has been changed following international recommendations (McIntosh et al 1998). The subunits Hcha, Hchb and Hchc have been renamed 1Hch, 2^{Hch} and 3^{Hch}, while the alleles have been named Glu- $H^{ch}1a$, Glu- $H^{ch}1b$ and Glu- $H^{ch}1c$, respectively.

In the normal gel (Fig. 1 A), all the subunits found, except subunit 10^{Hch} (*Glu-Hch1j*) present in line H210, showed faster mobility than subunit 1^{Hch} (*Glu-Hch1a*). This last subunit was the most frequent among the evaluated lines (28.9%) and corresponded with the component

Table 2 Relative frequencies of alleles of the locus $Glu-H^{ch}I$ amongst 38 lines of H. chilense

Alleles	Subunits	H. chilense	Tritordeums	
		Percentage	Accessions	derived $(n = 121)$
Glu-H ^{ch} 1a	1 ^{Hch}	28.9	H1, H8, H12, H59, H60, H200, H204, H209, H213, H217, H225	46
Glu-H ^{ch} 1b	2^{Hch}	2.6	H11	2
Glu-H ^{ch} 1c	3 ^{Hch}	13.2	H7, H17, H39, H55, H56	26
Glu-H ^{ch} 1d	4 ^{Hch}	18.4	H16, H35, H202, H203, H228, H304, H308	17
Glu-H ^{ch} 1e	5 ^{Hch}	10.5	H47, H51, H52, H205	10
Glu-Hch1f	6 ^{Hch}	7.9	H220, H286, H290	4
Glu-H ^{ch} Ig	7 ^{Hch}	5.3	H293, H295	4
Glu-H ^{ch} 1h	8 ^{Hch}	5.3	H297, H309	7
Glu-H ^{ch} 1i	9Hch	5.3	H252, H255	4
Glu-H ^{ch} 1i	10 ^{Hch}	2.6	H210	1

Fig. 1A, B SDS-PAGE separation of HMW glutenin subunits of *H. chilense* (lanes 1–10) on 8% polyacryamide gels (**A**) and 8% concentration gels containing 4 *M* urea (**B**). The HMW glutenin subunits of bread wheat cultivars Chinese Spring (*C*) and Yecora (Y), are numbered according to Payne and Lawrence (1983)

1 identified by Payne et al. (1987). Subunit 9^{Hch} (*Glu-Hch1i*) showed the fastest mobility, being found in 2 lines (H252 and H255) collected in the extreme south of the distribution area (38° 41' - 41° 40' LS). For the subunits 3^{Hch} (Glu-H^{ch}1c), 5^{Hch} (Glu-H^{ch}1e), 6^{Hch} (Glu-H^{ch}1f), 7^{Hch} (Glu-H^{ch}1g) and 8^{Hch} (Glu-H^{ch}1h), slight differences in relative mobility between them were apparent. These differences were only detectable with gels of a low polyacrylamide concentration (T= 8%, C= 1.28%), which could explain why its presence was overlooked in previous investigations (Villegas 1998).

Some investigations have indicated that the HMW glutenin subunits may present anomalous mobility in SDS-PAGE gels, which could be eliminated by the addition of a strong denaturant to the gel, such as 4 *M* urea (Goldsbrough et al. 1989; Lafiandra et al. 1993). Since the former could result in real variability of the HMW glutenin subunits of *H. chilense* being under-evaluated, the same samples shown in Fig. 1 A were loaded in gels with 4 *M* urea. The results are shown in Fig. 1B. The

mobility of the bands was notably changed, which enabled us to see the differences between the subunits more clearly.

Contrary to observations in previous works (Alvarez et al. 1999a), we did not find differences between subunits 2^{Hch} and 3^{Hch}. Only in the normal gel (Fig. 1 A) was a very slight difference in mobility detected. Nevertheless, because of the distinct differences shown in other investigations, we have to consider that the subunit 2^{Hch}, present only in H11, may be different from 3^{Hch}

Because of the *H. chilense* lines evaluated in this work have been used in the synthesis of tritordeums, we studied the distribution of the allelic variants detected in the 121 lines of tritordeum derived. The frequencies of each subunit inside this collection of tritordeum appear in Table 2. Again, subunit 1^{Hch} was the most frequent, appearing in 46 of 121 lines, followed by subunit 3^{Hch} (26 of 121) and 4^{Hch} (17 of 121). Subunits 2^{Hch} and 10^{Hch} were the least frequent, being present in 2 and 1 lines of tritordeum, respectively.

Distribution of the HMW glutenin subunits inside the collected area

It is important to emphasise that all of the lines evaluated have been grown for several generations under self-pollination conditions. Consequently, only part of the variability of the original populations has been evaluated. In any case, when the lines were classified on the basis of geographic origin, it was observed that, overall, the allelic variants were randomly distributed inside the collection area. Subunits 1Hch and 4Hch showed the widest distribution, with subunit 1Hch found in lines collected between 32° 18' and 34° 45' LS and subunit 4Hch appearing between 31° 47' and 34° 04' LS. On the contrary, other subunits such as 3Hch, 5Hch and 6Hch were found in several zones separated by large distances. Subunit 5Hch appeared in two zones separated by more than 4000 km. Other subunits (7Hch, 8Hch and 10Hch) appeared only in conspicuous zones. Subunit 8Hch was only found in the north, inside the distribution area of subunit 7^{Hch} (30° 32' and 30° 41' LS), while the subunit 10^{Hch} appeared in only 1 population. Subunit 9^{Hch} was only found in the south inside 2 populations separated by 3300 km.

On the other hand, some of the lines evaluated derived from the same population but had different subunits. For example, inside the PH720 population, lines H8 and H217 presented subunit 1^{Hch} while the lines H35 and H228 had subunit 4^{Hch}.

Alvarez et al. (1999b), using the same lines of H. chilense, found a high degree of variation in the D-prolamins. This, together with the variation at the Glu-Hch1 locus detected in this report, suggests that H. chilense is a very polymorphic species at the level of endosperm storage proteins. Our knowledge of their effect on bread making quality is still slight, although some of these new allelic variants are at present being studied. Therefore, we believe that this species could contribute to widening the genetic basis with respect to the quality of bread and durum wheats because of Hch genome promotes a similar effect on gluten strength as the \mathbf{D} genome from Ae. tauschii. In this respect, tritordeum could also be used as a bridge species for the transfer of these useful traits to wheat, independent of the development of tritordeum as a new man-made crop.

Acknlowledgements This research was supported by grant No. AGF98–0945-C02–02 from the Spanish Interministerial Commission of Science and Technology (CICYT).

References

- Alvarez JB, Canalejo AL, Ballesteros J, Rogers WJ, Martín LM (1993) Genealogical identification of hexaploid tritordeum by electrophoretic separation of endosperm storage proteins. Plant Breed 111: 166–169
- Alvarez JB, Campos LAC, Martín A, Sillero JA, Martín LM (1999a) Genetic analysis of prolamins synthesised by the H^{ch} genome and their effects on gluten strength in hexaploid tritordeum. Euphytica 107: 177–184
- Alvarez JB, Martín A, Martín LM (1999b) Allelic variation of the D-prolamin subunits encoded at the H^{ch} genome in a collection of primary hexaploid tritordeums. Theor Appl Genet 99: 296–299
- Cabrera A, Friebe B, Jiang J, Gill BS (1995) Characterization of *Hordeum chilense* chromosomes by C-banding and *in situ* hybridization using highly repeated DNA probes. Genome 38: 435–442

- Fernandez JA, Sanz JC, Jouve N (1987) Biochemical variation to determine phylogenetic relationships between *Hordeum chilense* and other American species of the genus Hordeum (Poaceae). Plant Syst Evol 157: 105–119
- Giménez MJ, Cosío F, Martínez C, Silva F, Zuleta A, Martín LM (1997) Collecting Hordeum chilense Roem. et Schult. germplasm in desert and steppe dominions of Chile. Plant Genet Resour Newsl 109: 17–19
- Goldsbrough AP, Bulleid NJ, Freedman RB, Flavell RB (1989) Conformational differences between two wheat (*Triticum aestivum*) 'high-molecular-weight' glutenin subunits are due to a short region containing six amino acid differences. Biochem J 263: 837–842
- Jauhar PP (1993) Alien gene transfer and genetic enrichment of bread wheat. In: Damania AB (ed) Biodiversity and wheat Improvement. ICARDA–A Wiley Sayce Publ, Aleppo, pp 103–119
- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685
- Lafiandra D, D'Ovidio R, Porceddu E, Margiotta B, Colaprico G (1993) New data supporting high M_r glutenin subunit 5 as determinant of qualitative differences in the pairs 5+10 vs 2+12. J Cereal Sci 18: 197–205
- Martín A, Alvarez JB, Martín LM, Barro F, Ballesteros J (1999) The development of tritordeum: a novel cereal for food processing. J Cereal Sci 30: 85–95
- McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, vol 5. University Extension Press, University of Saskatchewan, Saskatoon, pp 235
- Millán T, Martín A (1992) Effects of *Hordeum chilense* and *Triticum* cytoplasms on agronomical traits in hexaploid tritordeum. Plant Breed 108: 328–331
- Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, *Glu–A1*, *Glu–B1* and *Glu–D1* which code for high–molecular–weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11: 29–35
- Payne PI, Holt LM, Reader SM, Miller TE (1987) Chromosomal location of genes coding for endosperm proteins of *Hordeum chilense*, determined by two–dimensional electrophoresis of wheat–*H.chilense* chromosome addition lines. Biochem Genet 25: 53–65
- Tercero JA, Bernardo A, Jouve N (1991) Encoding genes for endosperm proteins in *Hordeum chilense*. Theor Appl Genet 81:127–132
- Tobes N, Ballesteros J, Martínez C, Lovazzano G, Contreras D, Cosio F, Gastó J, Martín LM (1995) Collection mission of *H. chilense* Roem. et Schult. in Chile and Argentina. Genet Resour Crop Eval 42: 211–216
- Varughese G (1996) Triticale: present status and challenges ahead. In: Güedes–Pinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow. Kluwer Academic Publ, Dordrecht, The Netherlands, pp 13–20
- Villegas AM (1998) Variabilidad de gluteninas en *Hordeum chilense*. BSc thesis, Universidad de Córdoba, Spain